Abstract
Laboratories in chemistry, biochemistry, and materials science are at the leading edge of technology, discovering molecules and materials to unlock capabilities in energy, catalysis, biotechnology, sustainability, electronics, and more. Yet, most modern laboratories resemble factories from generations past, with a large reliance on humans manually performing synthesis and characterization tasks. Robotics and automation can enable scientific experiments to be conducted faster, more safely, more accurately, and with greater reproducibility, allowing scientists to tackle large societal problems in domains such as health and energy on a shorter timescale. We define five levels of laboratory automation, from laboratory assistance to full automation. We also introduce robotics research challenges that arise when increasing levels of automation and when increasing the generality of tasks within the laboratory. Robots are poised to transform science labs into automated factories of discovery that accelerate scientific progress.
Access the full article
View all access options to continue reading this article.
CHECK ACCESS
ALREADY A SUBSCRIBER OR AAAS MEMBER? Sign in as an individual or via your institution
REFERENCES AND NOTES
1
A. T. Plowright, C. Johnstone, J. Kihlberg, J. Pettersson, G. Robb, R. A. Thompson, Hypothesis driven drug design: Improving quality and effectiveness of the design-make-test-analyse cycle. Drug Discov. Today 17, 56–62 (2012).
Crossref
PubMed
Google Scholar
2
B. A. Koscher, R. B. Canty, M. A. McDonald, K. P. Greenman, C. J. McGill, C. L. Bilodeau, W. Jin, H. Wu, F. H. Vermeire, B. Jin, T. Hart, T. Kulesza, S.-C. Li, T. S. Jaakkola, R. Barzilay, R. Gómez-Bombarelli, W. H. Green, K. F. Jensen, Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back. Science 382, eadi1407 (2023).
Crossref
PubMed
Google Scholar
3
K. Sanderson, Automation: Chemistry shoots for the Moon. Nature 568, 577–579 (2019).
Crossref
PubMed
Google Scholar
4
I. Holland, J. A. Davies, Automation in the life science research laboratory. Front. Bioeng. Biotechnol. 8, 571777 (2020).
Crossref
PubMed
Google Scholar
5
Y. Jiang, H. Fakhruldeen, G. Pizzuto, L. Longley, A. He, T. Dai, R. Clowes, N. Rankin, A. I. Cooper, Autonomous biomimetic solid dispensing using a dual-arm robotic manipulator. Digit. Discov. 2, 1733–1744 (2023).
Crossref
Google Scholar
6
S. Asche, G. J. T. Cooper, G. Keenan, C. Mathis, L. Cronin, A robotic prebiotic chemist probes long term reactions of complexifying mixtures. Nat. Commun. 12, 3547 (2021).
Crossref
PubMed
Google Scholar
7
V. Dragone, V. Sans, A. B. Henson, J. M. Granda, L. Cronin, An autonomous organic reaction search engine for chemical reactivity. Nat. Commun. 8, 15733 (2017).
Crossref
PubMed
Google Scholar
8
J. M. Granda, L. Donina, V. Dragone, D.-L. Long, L. Cronin, Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).
Crossref
PubMed
Google Scholar
9
M. Christensen, L. P. E. Yunker, F. Adedeji, F. Häse, L. M. Roch, T. Gensch, G. dos Passos Gomes, T. Zepel, M. S. Sigman, A. Aspuru-Guzik, J. E. Hein, Data-science driven autonomous process optimization. Commun. Chem. 4, 112 (2021).
Crossref
PubMed
Google Scholar
10
A. Milo, Democratizing synthesis by automation. Science 363, 122–123 (2019).
Crossref
PubMed
Google Scholar
11
A.-C. Bédard, A. Adamo, K. C. Aroh, M. G. Russell, A. A. Bedermann, J. Torosian, B. Yue, K. F. Jensen, T. F. Jamison, Reconfigurable system for automated optimization of diverse chemical reactions. Science 361, 1220–1225 (2018).
Crossref
PubMed
Google Scholar
12
J. Li, S. G. Ballmer, E. P. Gillis, S. Fujii, M. J. Schmidt, A. M. E. Palazzolo, J. W. Lehmann, G. F. Morehouse, M. D. Burke, Synthesis of many different types of organic small molecules using one automated process. Science 347, 1221–1226 (2015).
Crossref
PubMed
Google Scholar
13
N. Hartrampf, A. Saebi, M. Poskus, Z. P. Gates, A. J. Callahan, A. E. Cowfer, S. Hanna, S. Antilla, C. K. Schissel, A. J. Quartararo, X. Ye, A. J. Mijalis, M. D. Simon, A. Loas, S. Liu, C. Jessen, T. E. Nielsen, B. L. Pentelute, Synthesis of proteins by automated flow chemistry. Science 368, 980–987 (2020).
Crossref
PubMed
Google Scholar
14
S. Steiner, J. Wolf, S. Glatzel, A. Andreou, J. M. Granda, G. Keenan, T. Hinkley, G. Aragon-Camarasa, P. J. Kitson, D. Angelone, L. Cronin, Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).
Crossref
PubMed
Google Scholar
15
C. W. Coley, D. A. Thomas, J. A. M. Lummiss, J. N. Jaworski, C. P. Breen, V. Schultz, T. Hart, J. S. Fishman, L. Rogers, H. Gao, R. W. Hicklin, P. P. Plehiers, J. Byington, J. S. Piotti, W. H. Green, A. J. Hart, T. F. Jamison, K. F. Jensen, A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).
Crossref
PubMed
Google Scholar
16
A. Sparkes, W. Aubrey, E. Byrne, A. Clare, M. N. Khan, M. Liakata, M. Markham, J. Rowland, L. N. Soldatova, K. E. Whelan, M. Young, R. D. King, Towards robot scientists for autonomous scientific discovery. Autom. Exp. 2, 1 (2010).
Crossref
PubMed
17
H. J. Yoo, N. Kim, H. Lee, D. Kim, L. T. C. Ow, H. Nam, C. Kim, S. Y. Lee, K.-Y. Lee, D. Kim, S. S. Han, Bespoke metal nanoparticle synthesis at room temperature and discovery of chemical knowledge on nanoparticle growth via autonomous experimentations. Adv. Funct. Mater. 34, 2312561 (2024).
Crossref
Google Scholar
18
F. Kong, L. Yuan, Y. F. Zheng, W. Chen, Automatic liquid handling for life science: A critical review of the current state of the art. J. Lab. Autom. 17, 169–185 (2012).
Crossref
PubMed
Web of Science
Google Scholar
19
M. H. Reis, F. A. Leibfarth, L. M. Pitet, Polymerizations in continuous flow: Recent advances in the synthesis of diverse polymeric materials. ACS Macro Lett. 9, 123–133 (2020).
Crossref
PubMed
Web of Science
Google Scholar
20
A. Slattery, Z. Wen, P. Tenblad, J. Sanjosé-Orduna, D. Pintossi, T. den Hartog, T. Noël, Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science 383, eadj1817 (2024).
Crossref
PubMed
Web of Science
Google Scholar
21
A. A. Volk, R. W. Epps, D. T. Yonemoto, B. S. Masters, F. N. Castellano, K. G. Reyes, M. Abolhasani, AlphaFlow: Autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat. Commun. 14, 1403 (2023).
Crossref
PubMed
Web of Science
Google Scholar
22
M. Walker, G. Pizzuto, H. Fakhruldeen, A. I. Cooper, Go with the flow: Deep learning methods for autonomous viscosity estimations. Digit. Discov. 2, 1540–1547 (2023).
Crossref
PubMed
Web of Science
Google Scholar
23
S. Kleine-Wechelmann, K. Bastiaanse, M. Freundel, C. Becker-Asano, Designing the mobile robot Kevin for a life science laboratory, in 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (IEEE, 2022), pp. 870–875.
Google Scholar
24
A. Angelopoulos, M. Verber, C. McKinney, J. Cahoon, R. Alterovitz, High-accuracy injection using a mobile manipulation robot for chemistry lab automation, in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2023), pp. 10102–10109.
Google Scholar
25
B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison, Y. Bai, X. Wang, X. Li, B. M. Alston, B. Li, R. Clowes, N. Rankin, B. Harris, R. S. Sprick, A. I. Cooper, A mobile robotic chemist. Nature 583, 237–241 (2020).
Crossref
PubMed
Web of Science
Google Scholar
26
Q. Zhu, F. Zhang, Y. Huang, H. Xiao, L. Zhao, X. Zhang, T. Song, X. Tang, X. Li, G. He, B. Chong, J. Zhou, Y. Zhang, B. Zhang, J. Cao, M. Luo, S. Wang, G. Ye, W. Zhang, X. Chen, S. Cong, D. Zhou, H. Li, J. Li, G. Zou, W. Shang, J. Jiang, Y. Luo, An all-round AI-Chemist with scientific mind. Natl. Sci. Rev. 9, nwac190 (2022).
Crossref
PubMed
Web of Science
Google Scholar
27
H. Liu, N. Stoll, S. Junginger, K. Thurow, Mobile robotic transportation in laboratory automation: Multi-robot control, robot-door integration and robot-human interaction, in 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014) (IEEE, 2014), pp. 1033–1038.
Google Scholar
28
P. Dettinger, T. Kull, G. Arekatla, N. Ahmed, Y. Zhang, F. Schneiter, A. Wehling, D. Schirmacher, S. Kawamura, D. Loeffler, T. Schroeder, Open-source personal pipetting robots with live-cell incubation and microscopy compatibility. Nat. Commun. 13, 2999 (2022).
Crossref
PubMed
Web of Science
Google Scholar
29
N. J. Szymanski, B. Rendy, Y. Fei, R. E. Kumar, T. He, D. Milsted, M. J. McDermott, M. Gallant, E. D. Cubuk, A. Merchant, H. Kim, A. Jain, C. J. Bartel, K. Persson, Y. Zeng, G. Ceder, An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).
Crossref
PubMed
Web of Science
Google Scholar
30
T. Zonta, C. A. da Costa, R. da Rosa Righi, M. J. de Lima, E. S. da Trindade, G. P. Li, Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 150, 106889 (2020).
Crossref
Web of Science
Google Scholar
31
A. M. Lunt, H. Fakhruldeen, G. Pizzuto, L. Longley, A. White, N. Rankin, R. Clowes, B. Alston, L. Gigli, G. M. Day, A. I. Cooper, S. Y. Chong, Modular, multi-robot integration of laboratories: An autonomous workflow for solid-state chemistry. Chem. Sci. 15, 2456–2463 (2024).
Crossref
PubMed
Web of Science
Google Scholar
32
H. Fakhruldeen, G. Pizzuto, J. Glowacki, A. I. Cooper, ARChemist: Autonomous robotic chemistry system architecture, in 2022 International Conference on Robotics and Automation (ICRA) (IEEE, 2022), pp. 6013–6019.
Google Scholar
33
Emerald Cloud Lab: Remote Controlled Life Sciences Lab; www.emeraldcloudlab.com/.
Google Scholar
34
N. Yoshikawa, M. Skreta, K. Darvish, S. Arellano-Rubach, Z. Ji, L. Bjørn Kristensen, A. Z. Li, Y. Zhao, H. Xu, A. Kuramshin, A. Aspuru-Guzik, F. Shkurti, A. Garg, Large language models for chemistry robotics. Auton. Robots 47, 1057–1086 (2023).
Crossref
Web of Science
Google Scholar
35
J. H. Montoya, M. Aykol, A. Anapolsky, C. B. Gopal, P. K. Herring, J. S. Hummelshøj, L. Hung, H.-K. Kwon, D. Schweigert, S. Sun, S. K. Suram, S. B. Torrisi, A. Trewartha, B. D. Storey, Toward autonomous materials research: Recent progress and future challenges. Appl. Phys. Rev. 9, 011405 (2022).
Crossref
Web of Science
Google Scholar
(0)eLetters
eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.
Log In to Submit a Response

Science Robotics cover image
