First page of “AI-Rehab: A Framework for AI Driven Neurorehabilitation Training - The Profiling Challenge”
Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies
https://doi.org/10.5220/0009369108450853
‣
‣
‣
- Alchourrón, C. E., Gärdenfors, P., and Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. The journal of symbolic logic, 50(2):510-530.
- Bergeron, M. F., Landset, S., Tarpin-Bernard, F., Ashford, C. B., Khoshgoftaar, T. M., and Ashford, J. W. (2019). Episodic-memory performance in machine learning modeling for predicting cognitive health status classi- fication. Journal of Alzheimer's Disease, 70(1):277- 286. Bermúdez i Badia, S., Fluet, G. G., Llorens, R., and Deutsch, J. E. (2016). Virtual reality for sensorimo- tor rehabilitation post stroke: Design principles and evidence. In Neurorehabilitation technology, pages 573-603. Springer.
- Booth, R., Meyer, T., Varzinczak, I., and Wassermann, R. (2010). Contraction core for horn belief change: pre- liminary report. Unpublished manuscript.
- Bott, N. T. and Kramer, A. (2017). Cognitive rehabilitation. Encyclopedia of Geropsychology, pages 544-551.
- Carod-Artal, J., Egido, J. A., González, J. L., and Varela de Seijas, E. (2000). Quality of life among stroke sur- vivors evaluated 1 year after stroke: experience of a stroke unit. Stroke, 31(12):2995-3000.
- Chi, C.-L., Zeng, W., Oh, W., Borson, S., Lenskaia, T., Shen, X., and Tonellato, P. J. (2017). Personalized long-term prediction of cognitive function: Using se- quential assessments to improve model performance. Journal of biomedical informatics, 76:78-86.
- Cicerone, K. D., Dahlberg, C., Kalmar, K., Langenbahn, D. M., Malec, J. F., Bergquist, T. F., Felicetti, T., Gi- acino, J. T., Harley, J. P., Harrington, D. E., et al. (2000). Evidence-based cognitive rehabilitation: rec- ommendations for clinical practice. Archives of phys- ical medicine and rehabilitation, 81(12):1596-1615.
- Cicerone, K. D., Dahlberg, C., Malec, J. F., Langenbahn, D. M., Felicetti, T., Kneipp, S., Ellmo, W., Kalmar, K., Giacino, J. T., Harley, J. P., et al. (2005). Evidence- based cognitive rehabilitation: updated review of the literature from 1998 through 2002. Archives of physi- cal medicine and rehabilitation, 86(8):1681-1692.
- Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec, J. F., Kalmar, K., Fraas, M., Felicetti, T., Laatsch, L., Harley, J. P., Bergquist, T., et al. (2011). Evidence- based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Archives of physi- cal medicine and rehabilitation, 92(4):519-530.
- Cumming, T. B., Marshall, R. S., and Lazar, R. M. (2013). Stroke, cognitive deficits, and rehabilitation: still an incomplete picture. International Journal of stroke, 8(1):38-45.
- Delgrande, J. and Wassermann, R. (2010). Horn clause contraction functions: Belief set and belief base ap- proaches. In Twelfth International Conference on the Principles of Knowledge Representation and Reason- ing.
- Delgrande, J. P. (2008). Horn clause belief change: Con- traction functions. In KR, pages 156-165.
- Delgrande, J. P. and Schaub, T. (2003). A consistency- based approach for belief change. Artificial Intelli- gence, 151(1-2):1-41.
- Faria, A. L. and Bermúdez i Badia, S. (2015). Development and evaluation of a web-based cognitive task gener- ator for personalized cognitive training: a proof of concept study with stroke patients. In Proceedings of the 3rd 2015 Workshop on ICTs for improving Pa- tients Rehabilitation Research Techniques, pages 1-4. ACM. Faria, A. L., Pinho, M. S., and Bermúdez i Badia, S. (2018). Capturing expert knowledge for the personalization of cognitive rehabilitation: Study combining com- putational modeling and a participatory design strat- egy. JMIR rehabilitation and assistive technologies, 5(2):e10714.
- Fermé, E. and Hansson, S. O. (2011). Agm 25 years. Jour- nal of Philosophical Logic, 40(2):295-331.
- Fermé, E. and Hansson, S. O. (2018). Belief Change: In- troduction and Overview. Springer.
- Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014). Do we need hundreds of classi- fiers to solve real world classification problems? The Journal of Machine Learning Research, 15(1):3133- 3181.
- Fernández-Delgado, M., Sirsat, M., Cernadas, E., Alawadi, S., Barro, S., and Febrero-Bande, M. (2018). An extensive experimental survey of regression methods. Neural Networks.
- Freitas, S., Batista, S., Afonso, A. C., Simões, M. R., de Sousa, L., Cunha, L., and Santana, I. (2018). The montreal cognitive assessment (moca) as a screening test for cognitive dysfunction in multiple sclerosis. Applied Neuropsychology: Adult, 25(1):57-70.
- Freitas, S., Prieto, G., Simões, M. R., and Santana, I. (2014). Psychometric properties of the montreal cog- nitive assessment (moca): an analysis using the rasch model. The Clinical Neuropsychologist, 28(1):65-83.
- Freitas, S., Prieto, G., Simões, M. R., and Santana, I. (2015). Scaling cognitive domains of the montreal cognitive assessment: an analysis using the partial credit model. Archives of Clinical Neuropsychology, 30(5):435-447.
- Freitas, S., Simões, M. R., Alves, L., Duro, D., and Santana, I. (2012a). Montreal cognitive assessment (moca): validation study for frontotemporal dementia. Journal of Geriatric Psychiatry and Neurology, 25(3):146- 154.
- Freitas, S., Simões, M. R., Alves, L., and Santana, I. (2011). Montreal cognitive assessment (moca): normative study for the portuguese population. Journal of clin- ical and experimental neuropsychology, 33(9):989- 996.
- Freitas, S., Simões, M. R., Alves, L., and Santana, I. (2013). Montreal cognitive assessment: validation study for mild cognitive impairment and alzheimer disease. Alzheimer Disease & Associated Disorders, 27(1):37-43.
- Freitas, S., Simoes, M. R., Alves, L., Vicente, M., and Santana, I. (2012b). Montreal cognitive assessment (moca): validation study for vascular dementia. Jour- nal of the International Neuropsychological Society, 18(6):1031-1040.
- Freitas, S., Simoes, M. R., Marôco, J., Alves, L., and San- tana, I. (2012c). Construct validity of the montreal cognitive assessment (moca). Journal of the Interna- tional Neuropsychological Society, 18(2):242-250.
- George, D. R. and Whitehouse, P. J. (2011). Marketplace of memory: what the brain fitness technology industry says about us and how we can do better. The Geron- tologist, 51(5):590-596.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009). The el- ements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.
- Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., and Wang, Y. (2017). Arti- ficial intelligence in healthcare: past, present and fu- ture. Stroke and vascular neurology, 2(4):230-243.
- Katsuno, H. and Mendelzon, A. O. (1991). Propositional knowledge base revision and minimal change. Artifi- cial Intelligence, 52(3):263-294.
- Ko, H., Ihm, J.-J., Kim, H.-G., Initiative, A. D. N., et al. (2019). Cognitive profiling related to cerebral amy- loid beta burden using machine learning approaches. Frontiers in aging neuroscience, 11.
- LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn- ing. nature, 521(7553):436-444.
- Morris, K., Hacker, V., and Lincoln, N. B. (2012). The validity of the addenbrooke's cognitive examination- revised (ace-r) in acute stroke. Disability and rehabil- itation, 34(3):189-195.
- Nakamura, J. and Csikszentmihalyi, M. (2009). Flow the- ory and research. Handbook of positive psychology, pages 195-206.
- Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbon- neau, S., Whitehead, V., Collin, I., Cummings, J. L., and Chertkow, H. (2005). The montreal cognitive as- sessment, moca: a brief screening tool for mild cogni- tive impairment. Journal of the American Geriatrics Society, 53(4):695-699.
- Pagnucco, M. (2006). Knowledge compilation for belief change. In Australasian Joint Conference on Artificial Intelligence, pages 90-99. Springer.
- Parsons, T. D. (2015). Ecological validity in virtual reality- based neuropsychological assessment. In Encyclope- dia of Information Science and Technology, Third Edi- tion, pages 1006-1015. IGI Global.
- Paulino, T., i Badia, S. B., and Cameirão, M. (2019). Us- ability evaluation of an integrative exergaming system for the senior population. In 2019 5th Experiment In- ternational Conference (exp. at'19), pages 286-291. IEEE.
- Paulino, T., Muñoz, J., Bermúdez i Badia, S., and Cameirão, M. S. (2018). Design of an integrative system for con- figurable exergames targeting the senior population. In International Conference on Human Systems Engi- neering and Design: Future Trends and Applications, pages 287-292. Springer.
- Peppas, P. and Williams, M.-A. (2016). Kinetic consistency and relevance in belief revision. In European Confer- ence on Logics in Artificial Intelligence, pages 401- 414. Springer.
- Schwind, N., Inoue, K., Konieczny, S., Lagniez, J.-M., and Marquis, P. (2019). What has been said? identifying the change formula in a belief revision scenario. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 1865-1871. International Joint Conferences on Artifi- cial Intelligence Organization.
- Solana, J., Cáceres, C., García-Molina, A., Opisso, E., Roig, T., Tormos, J. M., and Gómez, E. J. (2014). Im- proving brain injury cognitive rehabilitation by per- sonalized telerehabilitation services: Guttmann neu- ropersonal trainer. IEEE journal of biomedical and health informatics, 19(1):124-131.
- Williams, M.-A. and Sims, A. (2000). Saten: An object- oriented web-based revision and extraction engine. arXiv preprint cs/0003059.
- Wilson, A. and McDonagh, J. (2013). Application of the principles of gamification to facilitate acquisition of self-management skills in young people with long- term medical conditions. In European Conference on Games Based Learning, page 579. Academic Confer- ences International Limited.
- Zhuang, Z. Q., Pagnucco, M., and Meyer, T. (2007). Imple- menting iterated belief change via prime implicates. In Australasian Joint Conference on Artificial Intelli- gence, pages 507-518. Springer.